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ABSTRACT
Motivation: DNA methylation is an important epigenetic modifi-
cation shown to be involved in cell differentiation, gene expression
and diseases. Whole-genome bisulfite sequencing (WGBS) is an
experimental protocol for obtaining base-resolution DNA methy-
lation data. DNA methylation studies typically perform a number
of WGBS experiments with a goal of identifying distinct differ-
ences between the two biological conditions, for example normal
and tumor samples. The comparison of WGBS data is complicated
by different sources of variability ranging from bisulfite conversion
failures to sequencing errors to biological variation. This calls for
accurate statistical models, which will enable accurate and robust
comparison of DNA methylation from WGBS data.
Results: We have developed CMeth, a new tool for comparison of
WGBS experiments. CMeth is based on a Bayesian extension of
the hidden Markov model (HMM) which incorporates distances
between consecutive cytosines into the inference process. CMeth
is capable of comparing both replicated and unreplicated exper-
iments and allows to control FDR (false discovery rate) in the
predictions it produces. Our results show that CMeth is on par
with existing methods in terms of sensitivity and offers improved
specificity, which is especially relevant in the low coverage setting.
Availability and implementation: CMeth has been implemented
in Kotlin and is available at https://github.com/JetBrains-
Research/cmeth.
Contact: sergei.lebedev@jetbrains.com

1 INTRODUCTION
DNA methylation is a chemical modification of a DNA, re-
sulting from the addition of a methyl group to a cytosine.
DNA methylation has been shown to play an essential role
in critical biological processes, including cell differentiation,
regulation of gene expression and diseases (?).
Whole-genome bisulfite sequencing (WGBS) is an exper-

imental protocol for measuring DNA methylation at nu-
cleotide resolution. A key step inWGBS is bisulfite treatment
of DNA, designed to promote epigenetic information to
the sequence level. As a result of bisulfite treatment un-
methylated cytosines undergo a conversion to uracils, while
methylated cytosines remain unchanged. During amplifica-
tion and sequencing, the uracils are read out as thymines.
This allows to detect methylation events during read map-
ping: reads carrying an unmethylated cytosine will have a
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C/T mismatch against the reference genome. Ideally the
reads covering each cytosine in the reference genome should
all either carry a C or a T. However, for real WGBS this is
rarely the case due to both biological and technical variation.
WGBS experiments typically work with multiple cells which
may differ slightly in methylation status of each individual
cytosine contributing to the biological variation. Technical
variation may be caused by bisulfite conversion failures, se-
quencing or mapping errors. Thus, the methylation status of
a cytosine is usually characterized by its methylation level —
an estimate of the probability that a cytosine is methylated.
DNA methylation studies typically perform a number

of WGBS experiments with a goal of identifying distinct
differences between the two biological conditions. For in-
stance, cancer studies are interesting in detecting regions
differentially methylated between normal and tumor samples.
A number of methods have been developed for detecting

differential methylation from WGBS data (?). Among the
first methods applied to methylome comparison were the
classical statistical hypothesis testing procedures: Fisher’s
exact test (?) and t-test (?). Both tests do not account
for the biological variability inherent for WGBS data, effec-
tively overestimating the number of differences between the
biological conditions being compared.
Another group of DMR detection methods is based on the

beta-binomial distribution. The number of reads confirming
methylation status of a particular cytosine is assumed to
follow a binomial distribution with a beta distributed methy-
lation proportion. The beta-binomial is a natural choice for
replicated WGBS data, because it allows to capture the bi-
ological variability across replicates in its beta component.
The tool MOABS (?) implements a hierarchical Bayesian
model, which uses Empirical Bayes to estimate the prior dis-
tribution of the methylation proportion from all available
samples. MOABS then uses the credible methylation dif-
ference (CDIF) statistic to discern differentially methylated
cytosines. DSS (?) extends the hierarchical model of MOABS
by assuming a group-specific log-normal distribution for the
variance parameter of the beta-binomial distribution. The
differentially methylated cytosines (DMCs) are determined
by testing the means of the beta-binomial distributions for
equality.
Recently introduced methylation analysis suite Bisulfighter

(?) contains a tool ComMet, which implements a hidden
Markov model (HMM) for DMR detection. ComMet doesn’t
use the beta-binomial distribution, but instead resorts to
pseudo counts to regularize the parameter of the binomial
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distribution. An interesting feature of ComMet is the use of
the between-cytosine distance distribution in the HMM ar-
chitecture. Each of the three model states (no change, hypo-
and hypermethylation) is paired with one (or two) “gap”
states. The choice between the number of “gap” states is up
to the user. The DMRs are identified via a dynamic program-
ming algorithm which optimizes posterior log-odds ratio for
a region to be differentially methylated.
Here we present CMeth, a new tool for accurate compari-

son of WGBS experiments. CMeth is based on the Bayesian
extension of the hidden Markov model, which we call a semi-
parametric switching HMM. Similarly to ComMet, our model
incorporates the distances between the cytosines into the in-
ference process. Unlike ComMet, however, the appropriate
number of “gap” states isn’t fixed and is determined from
the data as part of the inference process. CMeth is designed
to work with both replicated and non-replicated experiments.
Bayesian formulation of the model allows to account for bi-
ological variability directly instead of pooling the replicates
into a single sample. CMeth implements FDR (false discovery
rate) control for the predictions it produces. Bechmarks on
simulated and real data and show that CMeth is on par with
existing methods in terms of sensitivity and offers improved
specificity, which is especially relevant when the sequencing
depth is low.

2 METHODS
2.1 Data representation
We represent WGBS results for the r-th sample by a list of
three-tuples: xtr

.
= (ktr, ntr, dtr), ordered by genomic position

t ∈ {1, . . . , T}. Each sample corresponds to one of the two
compared biological conditions. The total number of samples is
denoted R ≥ 2. The quantities ktr and ntr are methylated and to-
tal coverage and dtr is the distance between the t-th and (t−1)-th
cytosines. We only consider cytosines covered by at least a single
read, that is ∀r, t (ntr > 0).

2.2 Model overview
We propose the semiparametric switching hidden Markov model
for DMR detection from bisulfite sequencing data. Our model is
abstract w.r.t. the number of states used. Here to simplify the
presentation we use four states

S = {(U1,U2), (M1,U2), (U1,M2), (M1,M2).}

The label (U1,U2), abbreviated by U, marks cytosines unmethy-
lated in both biological conditions, (M1,M2) or M — methylated
cytosines, (M1,U2) and (U1,M2) — differentially methylated
cytosines, abbreviated by ↑ and ↓ respectively.

The model can be deconstructed into two parts: the non-
parametric distance mixture and the binomial switching hidden
Markov model. The distance mixture groups distances between
consecutive observations into an unspecified number of distance
clusters. The switching hidden Markov model uses distance clus-
ters to refine the dependence structure between the states of
consecutive cytosines.
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Figure 1. Trellis diagram for the switching hidden Markov model.
Hidden state nodes represent methylation difference at step t. The
choice of the transition probability matrix A for each edge in the
graph is guided by the distance mixture.

2.3 Nonparametric distance mixture
The motivation for incorporating distances into the inference
process comes from the fact that consecutive cytosines in the ob-
servations may not be consecutive in the genome. That is, the
cytosines may be separated by a number of other nucleotides.

The distribution of distances estimated from real genomes (Fig-
ure ??, Supplementary Figure ??) suggests that using the distances
in the model directly is impractical due to the large number of pa-
rameters to be estimated. We group similar distances together
using a geometric Dirichlet process (DP) mixture model (?). An
attractive feature of the DP mixtures is that they don’t require
fixing the number of clusters beforehand. The appropriate num-
ber of clusters is determined from the data as part of the inference
process.
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Figure 2. Histogram of distances between consecutive cytosines on
the first chromosome of the hg19 reference genome.

DNA methylation is often studied relative to the cytosine con-
text: CG, CHG or CHH, where H means any nucleotide except G.
We use a shifted geometric distribution to account for the fact that
the distance between consecutive cytosines can be either non-zero
or strictly positive depending on the context. If a cytosine is in
CG context then d ≥ 1 and the shift must be 1. If a cytosine is in
CHG or CHH context then d ≥ 0 and the shift is 0. The p.m.f. of
a geometric distribution shifted by y with success probability qc
is given by

p(d|qc; y) = (1− qc)
d−yqc,
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where c ∈ N is the index of the mixture component or distance
cluster. A natural choice for the prior distribution of the qc is the
Beta distribution as it is conjugate to the geometric distribution
and has support interval of [0, 1].

qc ∼ Beta
(
α
(q)
0 , β

(q)
0

)
.

2.4 Binomial switching hidden Markov model
We assume that the number of reads confirming methylation ktr
at some genomic position t follows a binomial distribution with
parameters ntr and the “true” methylation proportion pir. The
index i ∈ {1, . . . , S} is an unobserved state label. States of con-
secutive cytosines form a first-order Markov chain with multiple
transition probability matrices Ac indexed by a distance cluster
c. We use the term switching to account for the fact that a chain
can switch a transition probability matrix at t-th observation with
probability defined by the distance mixture.

Our prior assumptions are common for Bayesian hidden Markov
models (?). For initial state probabilities π and state transition
probabilities Ac we use symmetric Dirichlet prior

π ∼ SymDir
(
ω
(π)
0

)
Aci ∼ SymDir

(
ω
(A)
0

)
,

and for the state-specific “true” methylation proportion we assume
the Beta distribution prior.

pir ∼ Beta
(
α
(p)
0 , β

(p)
0

)
2.5 Design matrix
Recall that each state label S = {U, ↑, ↓,M} can be represented as
a pair of labels from a smaller set {U,M}. Components of such pair
describe the methylation status of a cytosine in each of the biologi-
cal conditions. For example, U ≡ (U1,U2) and ↑ ≡ (H1,H2), or, if
we view the pairs in terms of the corresponding model parameters,

pU = (pU1
, pU2

) p↑ = (pH1
, pU2

).

Note that the second components of pU and p↑ both reference
the parameter pU2

and therefore must be the same. We use a
design matrix D to enforce these constraints. The matrix assigns
each sample-state pair an index in the parameter vector.

The design matrix enforcing a single value for pU2 in the above
example is given below. Elements marked with an asterisk (*)
correspond to the pU2

component of the parameters pU and p↑.
The same index in the design matrix ensures that the parameters
pU2

for both states are equal.

D =

U ↑ ↓ M[ ]
1 2 1 2 condition 1
3∗ 3∗ 4 4 condition 2

p =




pU1 1
pU2

2
pM1

3∗

pM2 4

Design matrix can be used to introduce arbitrary constraints
on the model parameters. For instance, we might argue that the
distribution of the “true” methylation proportion in the M state
is a characteristic of the biological condition and force the repli-
cates to share the corresponding parameters. The following design
matrix does exactly that for the case of two biological conditions
each having two replicates.

D =

U ↑ ↓ M


1 2∗ 1 2∗ condition 1, rep. a
3 2∗ 3 2∗ condition 1, rep. b
4 4 5+ 5+ condition 2, rep. a
6 6 5+ 5+ condition 2, rep. b
U1 M1 U1 M1

U2 U2 M2 M2

An asterisk (*) marks pM1
component of the parameters p↑ and

pM, while a plus (+) — pM2 component of p↓ and pM.
The matrix D can be thought of as an equivalence relation on

the set {1, . . . , R}×S. The number of equivalence classes denoted
E is the maximum index in the design matrix

E = max
r≤R, i∈S

Dri. (1)

2.6 Inference and parameter learning
Given the model described above and the matrix of bisulfite
sequencing results x, our goal is to compute the posterior distri-
bution of model parameters, and to infer the hidden state labels
for each cytosine.

For convenience we introduce two latent indicator variables.

• The indicator wct is 1 if the t-th distance was generated by
the c-th distance cluster and 0 otherwise.

• The indicator zit is 1 if the t-th observation was generated by
the i-th state and 0 otherwise.

2.6.1 Mean-field variational inference As with many Bayesian
models, exact posterior inference for the semiparametric switch-
ing HMM is intractable. We resort to the mean-field variational
method (?), which assumes independence between model param-
eters and latent variables. This assumption allows to lower bound
the marginal log-likelhood

log p(x) ≥ log q(x) =
∑
w

∑
z

∫
q(w, z)q(Θ) log

p(x,w, z,Θ)

q(w, z)q(Θ)
.

The inference is then performed by iteratively maximizing the
lower bound log q(x) with respect to latent variables w, z and
model parameters Θ.

Below we describe a mean-field variational algorithm for jointly
estimating the parameters of the distance mixture and binomial
switching HMM. Our algorithm is based on the truncated stick-
breaking representation of the DP mixture (?). The point of
truncation is to limit the maximum number of clusters in the DP
mixture with a value C and then seek the best variational approx-
imation to the true untruncated posterior distribution. Mean-field
inference assumes a fully factorized posterior distribution, which
in the case of the DP-mixture implies the independence of stick
weights (and effectively the mixing coefficients) from distance
cluster assignments. To overcome this unrealistic assumption we
integrate out stick weights from the posterior distribution (?).

The joint distribution over the parameters and latent indicator
variables can be written as

p(Θ,w, z) = p(w,q)p(z,A, π|w), (2)

and the family of variational approximation we consider is given
by

q(Θ,w, z) = q(w, z)q(q)q(A, π). (3)

Note that we do not assume the independence between distance
cluster assignments w and state assignments z.

We now describe the specific updates for each variational param-
eter. The complete derivation of updates is available in Section ??
of the Supplementary Data.
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1. The update equations for the parameters of the per-distance
cluster success probabilities are given by

α
(q)
c = α

(q)
0 +

T∑
t=2

E [wct] (4)

β
(q)
c = α

(q)
0 +

T∑
t=2

E [wct] dt. (5)

2. For the parameters of the initial and transition probabilities
the updates are

ω
(π)
i = ω

(π)
0 + E [zi1] (6)

ω
(A)
cij = ω

(A)
0 +

T∑
t=2

E
[
wctzi(t−1)zjt

]
. (7)

3. The update equations for the parameters of the methylation
proportions for each equivalence class are

α
(p)
e = α

(p)
0 +

R∑
r=1

S∑
i=1

I(Dri = e)
T∑

t=1

E [zit] ktr (8)

β
(p)
e = β

(p)
0 +

R∑
r=1

S∑
i=1

I(Dri = e)
T∑

t=1

E [zit] (ntr − ktr). (9)

2.6.2 Forward-backward algorithm The expectations E [wct],
E [zit] and E

[
wctzi(t−1)zjt

]
can be computed using a modifi-

cation of the forward-backward algorithm for Bayesian hidden
Markov models (??). The forward-backward algorithm computes
two auxiliary variables

αi(t)
.
= p(x1,x2, . . . ,xt, zit)

βi(t)
.
= p(xt+1,xt+2, . . . ,xT |zit),

using the following recursive rules1

αi(1) = π̃iBi1

αi(t) =
S∑

j=1

αj(t− 1)
C∑

c=1

p(w¬t)p(dt|q̃c)ÃcjiBit

βi(T ) = 1

βi(t− 1) =

S∑
j=1

C∑
c=1

p(w¬t)p(dt|q̃c)ÃcijBjtβj(t),

where p(w¬t)p(dt|q̃c) is the posterior probability of switching the
transition probability matrix to Ãc at observation t and Bit is the
probability of the observation xt being generated in state i.

Bit
.
=

E∏
e=1

R∏
r=1

p(krt|nrt, p̃e)
I(Dri=e).

The conditional p(wct|w¬t) is approximated using a second-order
Taylor expansion (?). Derivation is given in Section ?? of the
Supplementary Data.

Intuitively E
[
wctzi(t−1)zjt

]
is the expected number of transi-

tions from state i to state j via distance cluster c, which we can

1 Tilde marks the exponents of the expected values of the natural
logarithms of the parameters, i.e. θ̃ .

= eE[log θ].

compute using αi(t) and βi(t) as follows
E
[
wctzi(t−1)zjt

]
∝ αi(t− 1)p(w¬t)p(dt|q̃c)ÃcijBjtβj(t) (10)
.
= ξcij(t).

The remaining expectations can then be computed in terms of
ξcij(t).

E [zit] =

C∑
c=1

S∑
j=1

ξcij(t) ∝ αi(t)βi(t) (11)

E [wct] =
S∑

i=1

S∑
j=1

ξcij(t)

∝ p(w¬t)p(dt|q̃c)
S∑

i=1

S∑
j=1

αi(t− 1)ÃcijBjtβj(t) (12)

2.6.3 Convergence Each iteration of mean-field variational in-
ference is theoretically guaranteed to increase the lower bound on
the marginal log-likelihood (?). Thus the algorithm converged once
the the change in the lower bound between the iterations is less
than a specified threshold. Unfortunately, this technique is not
applicable to our model due to the use of approximation for com-
puting the conditional p(wct|w¬t). We rely on the ACVB criterion
suggested by ? to ensure convergence.

Algorithm 1 Variational inference for semiparametric switch-
ing HMM
For all equivalence classes and distance clusters initialize the
parameters α(p)

e , β(p)
e and α

(q)
c , β(q)

c with method of moments
estimates from KMeans++ (?) clusters. Initialize remaining
parameters with πi = Acij =

1

S
.

Repeat until convergence:

1. For each state and distance cluster,

• Compute the expectations E [wct], E [zit] and
E
[
wctzi(t−1)zjt

]
using Eq. ??, Eq. ?? and Eq. ??.

• Update the parameters of initial and transition
probabilities using Eq. ?? and Eq. ??.

2. For each distance cluster update the parameters of the
geometric distribution using Eq. ?? and Eq. ??.

3. For each equivalence class update the parameters of
methylation proportions using Eq. ?? and Eq. ??.

2.6.4 FDR control and Q-value estimation The work of ?
introduced an optimal procedure for HMM-dependent hypothesis
testing. The procedure is a thresholding rule based on the posterior
probability of the null hypothesis being true. ? show that under
some conditions the procedure is optimal in the sense that it con-
trols the FDR (false discovery rate) at level α and has the smallest
FNR (false non-discovery rate) among all valid FDR procedures.

The Q-value of a hypothesis test is the minimum FDR at which
the test may be called significant (?). Instead of fixing the level
α beforehand one can directly estimate the Q-value of each hy-
pothesis test. The FDR can then be controlled at level α using
a Q-value threshold q̂ (pt) ≤ α. We apply the optimal procedure
developed by ? to estimate Q-values.
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Algorithm 2 Q-value estimation
1. Let p1, . . . , pT be posterior probabilities ofH0 being true.
2. Let p[1] ≤ . . . ≤ p[T ] be posterior probabilities of H0

sorted in increasing order.
3. For each t ∈ {1, . . . , T} set

q̂
(
p[t]
)
=

1

t

t∑
k=1

p[k].

4. For each t ∈ {T − 1, T − 2, . . . , 1} set

q̂
(
p[t]
)
= min

{
q̂
(
p[t]
)
, q̂
(
p[t+1]

)}
.

2.6.5 DMR detection Having found the optimal parameters
via Algorithm ??, we calculate for each cytosine the posterior
probability of the null hypothesis that the methylation status of
the cytosine is the same in the two biological conditions being
compared.

p(H0|x,Θ) = p(U ∨M |x,Θ) = p(U |x,Θ) + p(M |x,Θ) (13)

We then use these posterior probabilities to estimate Q-values as
described in Algorithm ??. The DMRs for a fixed level α can
be reconstructed by joining together consecutive cytosines with a
Q-value less then or equal to α.

3 DATASETS
3.1 Simulated data
To evaluate the sensitivity and specificity of CMeth results
we resort to a simulation study.
Our simulation method is loosely based on DNemula-

tor (?), a tool for simulating bisulfite converted reads. We
approximate the distribution of methylation levels with a
Markov chain over five methylation ranges. Each methyla-
tion range is characterized by its mean methylation level and
cytosine context-specific frequency (see Table ??; Section ??
of the Supplementary Data).

Range CG CHG CHH
[0, 0] 0.090 0.775 0.865

(0, 0.12] 0.005 0.105 0.070
(0.12, 0.5] 0.100 0.108 0.059
(0.5, 0.8] 0.185 0.004 0.001
(0.8, 1] 0.620 0.008 0.005

Table 1. Methylation ranges and their frequencies estimated from
chr22 of the WGBS data for human ESCs, GEO Series GSE16256
(?)

Having the methylated ranges we construct bisulfite con-
verted reads for the two samples as follows.

1. Using chromosome 22 of the hg19 reference genome as
a template we independently assign each cytosine a ran-
dom methylation range with a probability defined by the
cytosine context.

2. We then construct a fixed number of non-overlapping re-
gions with known methylation difference. For each region
we first choose its length from the negative binomial dis-
tribution, then randomly pick its location in the genome,
and finally re-assign the methylation ranges in the simu-
lated region to the randomly chosen ranges. To simplify
the validation we assume that all cytosines in the region
have the same methylation range. The DMR score of a
region is the absolute difference between the indices of
the methylation ranges in each of the two samples. For
example, the DMR score of methylation ranges [0, 0] and
(0.5, 0.8] is 3. The regions with DMR score 4 were con-
sidered trully differentially methylated, while the regions
with zero DMR score were considered trully similar.

3. Finally, we simulate bisulfite converted reads by sam-
pling random genomic fragments of fixed length. Methy-
lation status of each cytosine in the read is determined
by a Bernoulli trial using the mean methylation level of
the corresponding methylation range state as parameter.

3.2 Real data
To assess CMeth performance on real data, we have used the
WGBS data from two methylation studies.

3.2.1 Fibroblast differentiation data The work of ? ex-
plored the methylation differences between the human ESCs
and fetal fibroblasts. The data, GEO series GSE16256,
includes both biological and technical replicates for each bi-
ological condition. Reads were pre-processed and aligned to
the hg19 reference genome using bwa-meth pipeline (?). Sub-
sampling was done using the view command of Samtools 1.3.

3.2.2 Atherosclerosis data ? consider a comparison be-
tween normal aortic tissue and atherosclerotic lesion, GEO
series GSE46401 (?). The study provides microarray data
for multiple donor-matched pairs, obtained from the Illu-
mina HumanMethylation450 BeadChip array, and WGBS
data for one of the donor-matched pairs. Sequencing data
are available pre-preprocessed and aligned to the hg19 refer-
ence genome. Microarray data, available in the form of CSV
files, were analyzed with minfi Bioconductor package (?).
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4 RESULTS
4.1 Simulation results
We evaluated the performance of CMeth on the dataset sim-
ulated as described in Section ?? varying the mean length
of simulated regions and sequencing depth. Simulated reads
were aligned to the hg19 reference genome using bwa-meth
pipeline. Results were compared against ComMet, MOABS
and DSS. We used default command line argument values for
each method; relevant details are available in Section ?? of
the Supplementary Data. The performance of each method
w.r.t. correctly identifying all cytosines in the simulated re-
gion as differentially or similarly methylated was summarized
using specificity and sensitivity (Table ??).

Method (5x, 500bp) (10x, 500bp) (20x, 1000bp)

Se
ns
it
iv
ity CMeth 93.28 98.65 99.90

ComMet 99.06 99.10 99.90
DSS 53.28 76.91 89.56
MOABS 86.56 95.35 99.62

Sp
ec
ifi
ci
ty CMeth 100.0 99.64 99.25

ComMet 88.82 92.51 95.85
DSS 100.0 100.0 100.0
MOABS 99.81 99.82 99.88

Table 2. Simulation results for different sequencing depths and
mean region lengths.

In terms of sensitivity, performance of CMeth was compa-
rable to ComMet and MOABS. However, CMeth consistently
achieved better specificity, outperforming both ComMet and
MOABS when the sequencing depth is low. This feature of
CMeth might be especially attractive for large scale methyla-
tion studies which typically trade off the number of replicates
for low sequencing depth. DSS was the most conservative
among the compared methods, demonstrating the lowest sen-
sitivity with the highest specificity. MOABS and ComMet
had similar performance on the simulated data, but ComMet
consistently discovered more false DMCs than other meth-
ods, detecting differential methylation even in regions with
zero DMR score (Figure ??).
We emphasize that our simulation method does not ac-

count for technical and biological variation inherent for
real-world WGBS data, thus the presented results can be
thought of as best-case analysis.
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Figure 3. Fraction of DMCs relative to the number of covered
cytosines in a region identified by each method over all regions at
sequencing depth 20x.

4.2 Real data application
4.2.1 Replicate consistency To further investigate the
properties of the CMeth approach w.r.t. existing methods
we considered a comparison between technical and biologi-
cal replicates of the human fibroblast differentiation dataset.
For simplicity we restricted the comparison to cytosines in
CG context on the first chromosome of the hg19 reference
genome. For all methods except MOABS FDR was controlled
at level α = 10−4.
We started by comparing each of the available technical

replicates for the 1 and 2 biological replicates of the hu-
man ESCs. The fraction of DMCs reported by each method
is summarized in Table ?? and in Supplementary Table ??.
We hypothesized that the fraction of cytosines differentially
methylated between the replicates should be low, since the
samples correspond to the same biological condition and the
difference if any is due to the technical variation. The out-
put of CMeth, DSS and MOABS supported our hypothesis.
These three methods identified a small (< 1%) fraction of
DMCs. ComMet, on the other hand, resulted in unrealisti-
cally large estimates, declaring almost > 10% of the input in
1a/1b and 2a/2b and > 40% in 2a/2c and 2b/2c as DMCs.
The latter can be the result of 2c having the lowest coverage
(1.16±0.02) among the replicates (Supplementary Table ??).
This suggest that MOABS predictions might be unstable in
the presence of very low coverage.
We then pooled together the technical replicates for both

ESCs and fibroblasts and performed a comparison within the
biological replicates, again seeing only a marginal number of
differences for CMeth, DSS and MOABS and the opposite
for ComMet (Supplementary Table ??).
Next we set to assess the robustness of each method to

low sequencing depth. We subsampled the aligned reads for
all biological replicates to 75%, 50%, and 25% coverage and
performed both between- and within- replicate comparisons
for ESCs and fibroblasts. Results were summarized in terms
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1a/1b 2a/2b 2a/2c 2b/2c
CMeth 0.00% 0.01% 0.02% 0.02%
ComMet 12.57% 12.19% 42.29% 41.12%
DSS — — — —
MOABS 0.14% 0.12% 0.01% 0.02%

Table 3. Fraction of DMCs in CG context on the first chromosome
of the hg19 reference genome between the technical replicates of
the human ESCs. FDR controlled at level α = 10−4. Biological
replicates are identified with a digit (1 or 2), technical replicates
— with a character (a, b or c).

of the cytosine status changes between the full and subsam-
pled data. It is reasonable to assume that a small number
of new DMCs might appear by chance due to the random
nature of the subsampling procedure. Thus the output of a
method on subsampled data is expected to deviate slightly
from that on full data. A large number of deviations, how-
ever, might indicate the lack of robustness. CMeth, DSS,
and MOABS produced few new DMCs in the low coverage
setting, as evident from Figure ?? and Supplementary Fig-
ure ??. As previously, ComMet overestimated the number of
DMCs with more new DMCs appearing at lower sequencing
depth.
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Figure 4. Fraction of newly “discovered” (→DMC) and lost
(DMC→) DMCs in the comparisons of subsampled data on the
first chromosome of the hg19 reference genome. Comparisons were
performed between the biological replicates of the human ESCs
and human fibroblasts.

Then we looked at the fraction of DMCs loosing DMC
status after subsampling (Figure ??). Being the most conser-
vative method, DSS demonstrated the highest rejection rate
on subsampled data, followed by CMeth, MOABS and Com-
Met. The performance of CMeth was on par with MOABS,
albeit MOABS exhibited a slightly lower rejection rate than
CMeth, which is likely to be a consequence of low specificity
of MOABS.
Finally we compared the human ESCs to human fibrob-

lasts using both biological replicates. Following ? we used
Fisher’s exact test as a baseline method. ComMet was ex-
cluded from comparison because it doesn’t support replicated

data. Interestingly, we found that even though MOABS ac-
cepts replicates as input, it doesn’t include them into the
model and instead combines into a single file prior to analysis.
As expected, all of the methods discerned more DMCs than

Fisher exact test with FDR controlled at the same level, see
Table ??. We then overlapped the resulting DMCs (Figure ??)
and discovered significant agreement between the predictions
produced by different methods. Interestingly, MOABS re-
ported more DMCs than any other method. We argue that
this is a consequence of ignoring the biological variation by
pooling the replicates. CMeth also produced a relatively large
number of DMCs, but its predictions were more in line with
that of DSS and Fisher exact test (Supplementary Figure ??).

Method FET CMeth DSS MOABS
# of DMCs 47,778 (2.91%) 194,012 60,739 219,267

Table 4. Number of DMCs in CG context on the first chromosome
of the hg19 reference genome in the comparison of the human ESCs
and human fibroblasts.
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29386
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Figure 5. Venn diagram of the DMCs found by CMeth, DSS and
MOABS on the first chromosome of the hg19 reference genome in
the comparison of the human ESCs and human fibroblasts.
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4.2.2 Atherosclerosis data We compared the WGBS data
for normal aortic tissue and atherosclerosis lesion against the
Illumina HumanMethylation450 BeadChip array data, which
contains 15 biological replicates for both conditions. As the
microarray data does not allow for DMR detection we fo-
cused on evaluating the differences between the predictions
for individual cytosines.
The DMCs reported by dmpFinder from the minfi pack-

age were intersected with the ones identified by CMeth at
FDR ≤ 10−4. To our surprise the degree of agreement be-
tween the results produced by the two methods was low.
Specifically, CMeth and minfi identified 99,052 and 20,874
DMCs, the number of commonly identified DMCs however
was only 1,463. We hypothesized that the disagreement is
not caused by reduced power of the analysis methods and
is instead explained by data heterogeneity. And indeed the
distribution of the methylation levels obtained from WGBS
data diverges from the one obtained from microarray data
(Figure ??).
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Figure 6. The histogram of methylation levels obtained from Il-
lumina HumanMethylation450 BeadChip array complemented by
the corresponding methylation levels from WGBS data.

The analysis of ? identified 7 genes containing differentially
methylated cytosines and showed by qRT-PCR that these
genes are also differentially expressed between normal aortic
tissue and atherosclerosis lesion. We attempted to confirm
the methylation differences found by ?. To do so, we counted
the fraction of DMCs in promoters regions, exons and introns
for each of the 7 genes (Table ??) and compared our results to
genomic contexts reported by ?. For all genes except PLAT
the majority of differences occurred in the expected context.
The fraction of differentially methylated cytosines in each
context however is marginal, with HOXA6 and HOXA9 being
an exception.
To conclude our analysis we focused on the specific cy-

tosines within the atherosclerosis-linked genes reported to be
differentially methylated. For each cytosine we collected the
methylated and total coverage in both samples and DMC sta-
tus as predicted by CMeth (Supplementary Table ??). CMeth
predictions were consistent with ? for 5 out of 10 cytosines.
For the remaining cytosines available WGBS data does not
exhibit any differences.

Gene Promoter Exons Introns
HOXA6 *27.65% 9.24% 0%
HOXA9 2.67% *5.73% *36.7%
PDGFA 0.24% 0% *2.17%
PLAT 2.13% *1.03% 2.60%
PRRX1 0% 0% *2.36%
PXDN 0% *2.69% 2.82%
MIR23b *12.84% 0% 0%

Table 5. Fraction of the DMCs in promoter regions, exons and
introns for each of the 7 differentially expressed genes. The asterisk
(*) marks the context of the DMC as reported by ?.

5 DISCUSSION
In this article, we described CMeth, a new tool for compar-
ison of WGBS experiments. The major contributions of this
work are twofold. First we proposed a Bayesian extension
of the hidden Markov model, which incorporates distances
between consecutive observations into the inference process.
Unlike ComMet our model is semiparameteric in a sense that
it doesn’t group the distances into a fixed number of clusters;
instead, an appropriate number of clusters is determined dur-
ing inference. Second, we used the work of ? on dependent
hypothesis testing to develop a Q-value estimation procedure
for methylation differences; Q-values can then be thresholded
independently of CMeth to control FDR at an arbitrary level.
The model of CMeth implicitly assumes the linearity of

spatial dependencies along the genome, that is, the more
distant a cytosine is from its neighbour, the less it affects the
neighbours methylation state. While this might be true for
some regions of the genome, in general, the validity of the
assumption is questionable. A more realistic model of depen-
dence might incorporate the conformation structure of the
DNA molecule instead of linear genomic distances. Recent
advances in the field allow to obtain high-resolution DNA
conformation data via methods such as Hi-C (?). Another
direction of work is related to the inference of the semipa-
rameteric switching HMM. The quality of posterior estimates
can be improved by applying ideas from tensor decomposi-
tion methods (?), while the time and memory requirements
might benefit from exploring stochastic gradient approaches
(???).

Funding: This work was supported by JetBrains.
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1 MODEL DESCRIPTION
Bisulfite sequencing allows to detect methylation events for a cytosine in the reference genome by counting the number of
mapped reads carrying either C (methylated cytosine) or T (bisulfite converted unmethylated cytosine). Thus for each cytosine
t in the sample s we have ktr — methylated coverage and ntr — total coverage.
Given a two biological conditions each represented by a number of samples we want to find regions differentially methylated

between two conditions. To do so we first want to assign each cytosine a label from the set {U, ↑, ↓,M}, where U and M mark
cytosines methylated or unmethylated in both biological conditions, and ↑, ↓ — differentially methylated cytosines.
We use the framework of probabilistic models to infer the hidden state labels from bisulfite sequencing results x.

1.1 Nonparamteric distance mixture

p(v|λ) =
∞∏
c=1

Beta (vc|1, λ) =
∞∏
c=1

(1− vc)
λ

B(1, λ)

p(w) = Ev

[
T∏

t=2

Cat (wt|κ)

]
κc

.
= vc

c−1∏
d=1

(1− vd)

p(q) =

∞∏
c=1

Beta
(
qc|α(q)

0 , β
(q)
0

)
=

∞∏
c=1

q
α
(q)
0 −1

c (1− qc)
β
(q)
0 −1

B(α
(q)
0 , β

(q)
0 )

p(d|z,q) =
T∏

t=2

∞∏
c=1

Geom (dt|pc)wct

=
T∏

t=2

∞∏
c=1

[
(1− qc)

dt−yqc
]wct

1.2 Binomial switching hidden Markov model

p(π|ω(π)
0 ) = SymDir

(
π|ω(π)

0

)
=

Γ(ω
(π)
0 S)

Γ(ω
(π)
0 )S

S∏
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0 −1
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p(A|ω(A)
0 ) =
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E∏
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S∏
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(
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(p)
0
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=

E∏
e=1

p
α
(p)
0 −1

e (1− pe)
β
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0 −1

B(α
(p)
0 , β

(p)
0 )

p(k|n,p) =
E∏

e=1

R∏
r=1

S∏
i=1

T∏
t=1

[Binom (ktr|ntr, pe)]
I(Dri=e)zit

=

E∏
e=1

R∏
r=1

S∏
i=1

T∏
t=1


ntr

ktr

pktr
Dri

(1− pDri)
ntr−ktr


I(Dri=e)zit

The joint log-likelihood of model parameters Θ, latent indicator variables w and z and observations x can be factorized
into two terms

log p(Θ,w, z,x) = log p(d,w,q) + log p(k,n, z,A, π|w). (1)

Here the first term corresponds to the joint log-likelihood of between-cytosine distances and geometric mixture parameters

log p(d,w,q) = log p(d|w,q) + log p(w) + log p(q), (2)

while the second term is the joint log-likelihood of methylation counts and parameters of the switching hidden Markov model

log p(k,n, z,A, π|w) = log p(k|n, z,p) + log p(z|w, π,A) + log p(A) + log p(π) + log p(p). (3)
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Note that the first term doesn’t contain stick-weights. Following ? we integrate out stick-weights v from the joint log-
likelihood.

p(w,v) = p(w|v)p(v) =
∞∏
c=1

T∏
t=1

vwct
c

c−1∏
d=1

(1− vd)
wdt

(1− vc)
λ−1

B(1, λ)

=

∞∏
c=1

vTc
c (1− vc)

λ+T>c−1

B(1, λ)
=

∞∏
c=1

λ
Γ(1 + Tc)Γ(λ+ T>c)

Γ(1 + λ+ T≥c)
Beta (vc|αc, βc) , (4)

where we’ve denoted Tc =
T∑

t=1

wct and T>c =
C∑

d=c+1

Tc. Integrating w.r.t. v we get

p(w) =

∫
p(w,v)dv =

∞∏
c=1

λ
Γ(1 + Tc)Γ(λ+ T>c)

Γ(1 + λ+ T≥c)
(5)

2 DERIVATION OF THE MEAN-FIELD VARIATIONAL ALGORITHM
We apply mean-field variational method (?) for approximate posterior inference. The mean-field approximation assumes the
following factorization of the joint posterior distribution2

q(w,q, z, π,A,p) = q(w, z)q(q, π,A,p). (6)

The algorithm consists of iterating two steps, E for expectation and M for maximization, until convergence. Below we derive
both steps for the proposed model.

2.1 E-step
The E-step computes the variational approximation to the posterior distribution of the latent variables w and z. Taking the
expecation w.r.t. all parameters except w and z and then omitting the terms independent of either w or z we get

log q∗(w, z) ∝ E [log p(w)] + E [log p(d|w,q)]

+ E [log p(z|w, π,A)] + E [log p(k|n, z,p)] . (7)

The first two terms in the expression above came from distance mixture part of the joint log-likelhood. Expanding the second
term

E [log p(d|w,q)] =
C∑

c=1

T∑
t=2

wct ((dt − y)E [log(1− qc)] + E [log qc]) . (8)

Expanding the last two terms, which correspond to the binomial switching HMM part of the joint log-likelhood, we get

E [log p(z|w, π,A)] =
S∑

i=1

zi1E [log πi] +
S∑

j=1

C∑
c=1

T∑
t=2

wctzi(t−1)zjtE [logAcij ]

E [log p(k|n, z,p)] ∝
E∑

e=1

R∑
r=1

S∑
i=1

I(Dri = e)

T∑
t=1

zit (ktrE [log pe] + (ntr − ktr)E [log(1− pe)])

We now focus on the first term which is a little trickier to compute. Rewriting p(w) in terms of the individual distributions
of component assignments

E [log p(w)] =
C∑

c=1

T∑
t=1

Ew¬t

[
log p(wct|w¬t)

]
=

C∑
c=1

T∑
t=1

Ew¬t

[
log p(wct|w¬t)

]
The conditional p(wct|w¬t) is given by

p(wt|w¬t) =
p(w)

w¬t
=

Γ(1 + Tc)Γ(λ+ T>c)

Γ(1 + λ+ T≥c)

Γ(1 + λ+ T¬t
≥c)

Γ(1 + T¬t
c )Γ(λ+ T¬t

>c)
(9)

=
(1 + T¬t

c )

(1 + λ+ T¬t
≥c)

c−1∏
d=1

(λ+ T¬t
>c)

1 + λ+ T¬t
≥d

, (10)

where the last step is due to the fact that T¬t
>d is different from Td only for d < c.

2 We use q(θ) to denote the variational approximation to the the true distribution p(θ) of parameter θ.

10



CMeth

Following ?, we approximate the conditional using second-order Taylor expansion

log p(wct|w¬t) ≈ log
(
1 + E

[
T¬t
c

])
+

1

2

(
1 + E

[
T¬t
c

])−2 V
[
T¬t
c

]
−Dc

+

c−1∑
d=1

log
(
λ+ E

[
T¬t
>d

])
+

1

2

(
1 + E

[
T¬t
>d

])−2 V
[
T¬t
>d

]
−Dd (11)

Dc = log
(
1 + λ+ E

[
T¬t
≥c

])
+

1

2

(
1 + λ+ E

[
T¬t
≥c

])−2 V
[
T¬t
≥c

]
. (12)

The remaining expectations can be approximated by Gaussian distributions with means and variances given by

E [T>c] =

T∑
t=1

C∑
d=c+1

zdtq(zdt)

E [T≥c] = E [T>c] + E [Tc]

V [T>c] =

T∑
t=1

C∑
d=c+1

zdtq(zdt)

c∑
d=1

zdtq(zdt)

V [T≥c] =

T∑
t=1

C∑
d=c

zdtq(zdt)

c−1∑
d=1

zdtq(zdt).

(13)

2.2 M-step
To derive the M-step for parameter θ we take the expectation w.r.t. all parameters except θ and then omit the terms
independent of θ. For parameters with conjugate priors the resulting expression is of the same form as the prior.

2.2.1 Distance mixture parameters

Success probabilities

log q∗(q) ∝ E [log p(d|w,q)] + log p(q)

∝
T∑

t=2

C∑
c=1

E [wct] (dt log(1− qc) + log qc) +

C∑
c=1

(α
(q)
0 − 1) log qc + (β

(q)
0 − 1) log(1− qc)

∝
C∑

c=1

(α
(q)
0 +

T∑
t=2

E [wct]− 1) log qc + (β
(q)
0 +

T∑
t=2

E [wct] dt − 1) log(1− qc)

∝
C∑

c=1

Beta
(
qc|α(q)

c , β(q)
c

)

which gives us the update

α(q)
c = α

(q)
0 +

T∑
t=2

E [wct] (14)

β(q)
c = α

(q)
0 +

T∑
t=2

E [wct] dt (15)

2.2.2 Switching hidden Markov model parameters

Initial state probabilities

log q∗(π) ∝ E [log p(z|w, π,A)] + E [log p(π)] ∝
S∑

i=1

(
ω

(π)
0 + E [zi1]− 1

)
log πi,

which gives us the update

ω
(π)
i = ω

(π)
0 + E [zi1] . (16)
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State transition probabilities

log q∗(A) ∝ E [log p(z|w, π,A)] + E [log p(A)]

∝
C∑

c=1

S∑
i=1

S∑
j=1

(
ω

(A)
0 +

T∑
t=2

E
[
wctzi(t−1)zjt

]
− 1

)
logAcij .

which gives us the update

ω
(A)
cij = ω

(A)
0 +

T∑
t=2

E
[
zi(t−1)zjtwct

]
. (17)

Methylation rates

log q∗(p) ∝ E [log p(k|n, z,p)] + E [log p(p)]

∝
E∑

e=1

R∑
r=1

S∑
i=1

I(Dri = e)

T∑
t=1

E [zit] (ktr log pe + (ntr − ktr) log(1− pe))

+
(
α
(p)
0 − 1

)
log pe +

(
β
(p)
0 − 1

)
log(1− pe)

∝
E∑

e=1

(
α
(p)
0 +

R∑
r=1

S∑
i=1

I(Dri = e)

T∑
t=1

E [zit] ktr − 1

)
log pe

+

(
β
(p)
0 +

R∑
r=1

S∑
i=1

I(Dri = e)

T∑
t=1

E [zit] (ntr − ktr)− 1

)
log(1− pe),

which gives us the update

α(p)
e = α

(p)
0 +

R∑
r=1

S∑
i=1

I(Dri = e)
T∑

t=1

E [zit] ktr (18)

β(p)
e = β

(p)
0 +

R∑
r=1

S∑
i=1

I(Dri = e)

T∑
t=1

E [zit] (ntr − ktr). (19)

3 METHYLATION RANGES
We approximate empirical distribution of methylation levels with a discerete distribution over methylation ranges. To choose
the breaks for the ranges we used bisulfite sequencing data for the human ESCs (?). We pooled together both biological
replicates and calculated the distribution of methylation levels for each cytosine on the chr22 (Supplementary Figure ??).
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Figure 7. Per cytosine context histograms of methylation levels estimated from the 22-th chromosome of the human ESCs.

For cytosines in CG context the histogram exhibits peaks in the areas close to zero and one. Cytosines in CHG and CHH
contexts remain largely unmethylated, both histograms have peaks around zero. Thus 0 and 1 methylation levels are good
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candidates to be included in the list of breaks. Another interesting feature of the histograms is a peak around 0.5, which
can be observed for all contexts. Thus we included 0.5 as the third break. To obtain the remaining two breaks we removed
extreme 0 and 1values from the data and for the remaining data estimated the median methylation level separately for each
cytosine context. For CG the median methylation level was 0.8, CHG — 0.13, CHH — 0.11. The medians for CHG and CHH
were close, so we decided to average them into a single break 0.12.
The methylation ranges corresponding to the chosen breaks are [0, 0], (0, 0.12], (0.12, 0.5], (0.5, 0.8], (0.8, 1].

4 COMMAND LINE ARGUMENTS
4.1 ComMet
ComMet v1.1 from the Bisulfighter analysis suite was executed with default arguments, which assume the absence of the
log-odds ratio scores thresholding for the DMRs identified by the dynamic programming algorithm.

4.2 MOABS
MOABS v1.2.9 was executed with default arguments using BED formatted inputs, as suggested by the MOABS authors in
the MOABS Google Group post.

mcomp -p 16 -r sample1.bed -r sample2.bed -c output.txt

Although MOABS manual mentions the DMR detection feature it does not give the details of obtaining DMRs using
MOABS, thus we used the data from the comparison file output.txt. Cytosines were considered differentially methylated if
the absolute value of the CDIF statistic was at least 0.2, as suggested by the manual.

4.3 DSS
DSS v2.4.1 was downloaded from Bioconductor and applied as follows

run_dss <- function(input_path1, input_path2, dmp_path, dmr_path) {
BS1 <- makeBSseqData(list(read.csv(input_path1, sep = ”\t”)), ”1”)
BS2 <- makeBSseqData(list(read.csv(input_path2, sep = ”\t”)), ”2”)
dml <- callDML(BS1, BS2, equal.disp = T)
dmr <- callDMR(dml, p.threshold = 1e-4)
write.table(dml, dmp_path, sep = ”\t”, quote = F)
write.table(dmr, dmr_path, sep = ”\t”, quote = F)

}

The equal.disp argument is required because the simulated data is not replicated, which implies that the variances within
the two compared conditions are equal to zero.

5 SUPPLEMENTARY FIGURES
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Figure 8. Histogram of distances between consecutive cytosines on the first chromosome of the mm10 reference genome.

6 SUPPLEMENTARY TABLES
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Figure 9. Fraction of DMCs newly “discovered” (→DMC) and lost (DMC→) in the comparisons of subsampled data on the first
chromosome of the hg19 reference genome. Comparisons were performed within the biological replicates of the human ESCs and human
fibroblasts.
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Figure 10. Venn diagram of the DMCs found by CMeth, FET (Fisher’s Exact Test) and MOABS on the first chromosome of the hg19
reference genome in the comparison of the human ESCs and human fibroblasts.

Replicate Mean SD
1a 5.79 86.96
1b 5.37 83.48
2a 7.66 100.34
2b 17.60 444.75
2c 1.16 5.59

Table 6. Coverage mean and standard deviation on the first chromosome of the hg19 for technical replicates of the human ESCs (?).

1a/2a 1a/2b 1a/2c 1b/2a 1b/2b 1b/2c
CMeth 0.05% 0.04% 0.03% 0.05% 0.04% 0.01%
ComMet 13.77% 13.50% 40.68% 13.41% 13.12% 40.09%
DSS — — — — — —
MOABS 0.21% 0.20% 0.01% 0.17% 0.15% 0.02%

Table 7. Fraction of DMCs in CG context on the first chromosome of the hg19 reference genome between the technical replicates of the
human ESCs (?). Biological replicates are identified with a digit (1 or 2), technical replicates — with a character (a, b or c).
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ESC IMR90
CMeth 0.09% 0.02%
ComMet 18.33& 2.08%
DSS 0.00% —
MOABS 0.21% 0.18%

Table 8. Fraction of differentially methylated and covered cytosines in CG context on the first chrosomosome of the hg19 reference
genome between the biological replicates of the human ESCs and fibroblasts (?). FDR controlled at level α = 10−4.

Gene ID Lesion Normal Status
HOXA6 cg19816811 2/17

26/32 DMC
HOXA9 cg03217995 5/19

33/39 DMC
HOXA9 cg16913789 0/10

4/29 —
HOXA9 cg25188395 0/11

1/17 —
PDGFA cg14496282 0/3

1/9 —
PLAT cg01419713 9/17

9/28 —
PRRX1 cg21914290 11/25

43/50 DMC
PXDN cg07608848 5/10

4/22 —
PXDN cg15796818 6/12

2/25 DMC
MIR23b cg00351472 14/39

2/28 DMC
Table 9. Methylation and total coverage for individual DMCs within the genes linked to atherosclerosis. The status column contains
CMeth prediction at FDR ≤ 10−4.
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